
An analytic treatment of the first-order correction to the Poisson-Boltzmann interaction free

energy in the case of counterion-only Coulomb fluid

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 275

(http://iopscience.iop.org/0305-4470/23/3/012)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 09:57

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 23 (1990) 275-284. Printed in the UK 

An analytic treatment of the first-order correction to the 
Poisson-Boltzmann interaction free energy in the case of 
counterion-only Coulomb fluid 

Rudi Podgomik 
J Stefan Institute, PO Box 100, 61111 Ljubljana, Yugoslavia 

Received 30 May 1989 

Abstract. We have computed the first-order (correlation) correction to the Poisson- 
Boltzmann result for the interaction energy of two charged surfaces immersed into a 
counterion-only Coulomb fluid. The cases of small and large coupling were amenable to 
analytic treatment in the saddle-point approximation. 

1. Introduction 

Electrostatic interactions between charged macroscopic surfaces immersed in an elec- 
trolyte are of primary importance in subjects as diverse as colloid stability or 
(bio)macromolecular assembly. They are usually evaluated in the mean-field (Poisson- 
Boltzmann) approximation that leads to repulsive forces if the two interacting surfaces 
are equally charged [l]. Recently much effort has been directed towards a consistent 
generalisation of the mean-field theory that would take into account also the thermody- 
namic fluctuations in the local charge distributions [2]. The importance of the correla- 
tion corrections to the interaction free energy can be assessed from the fact that in 
some physically realistic cases they can even reverse the sign of the interaction [3]. 

Though the most successful approaches to the correlation problem lead to theories 
of high numerical complexity [2] we have been able to devise an alternative, simpler, 
approach that in certain cases leads even to analytical results, while at the same time 
remains as close as possible to the original Poisson-Boltzmann treatment [4]. Our 
approach relies heavily on the use of the functional integral representation (the 
sine-Gordon transform) of the grand canonical partition function of the interacting 
Coulomb fluid and uses the standard methods of field theory [ 5 ] .  It yields a quadratic 
fluctuation (correlation) correction to the mean-field results. 

In this paper we shall show how the application of the saddle-point approximation 
to the grand canonical partition function of the counterion-only system bounded by 
two charged surfaces leads to analytically tractable results in the limiting cases of small 
and large couplings. The quadratic fluctuation corrections to the mean-field results 
will be evaluated with the help of the 6-function technique [ 5 ] .  The small-coupling 
limit will be reduced to an evaluation of a free particle propagator in a slab with 
additional boundary conditions on the borders, while the large-coupling limit will be 
reduced to a form basically equivalent to the symmetrised Poschl-Teller propagator. 
Both propagators will be solved analytically, giving exact limiting forms for the 
interaction free energy. 
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2. Functional integral representation of the grand canonical partition function 

We shall consider a dielectric of constant relative permittivity E spanning the region 
--CO c z c CO. The slab 121 s a is filled by mobile counterions of unit charge and absolute 
activity z,. In order to ensure the stability of the system we assume that the walls at 
z = * a  are uniformly negatively charged with surface charge density U. The magnitude 
of the surface charge is such that it ensures the overall eleEtrica1 neutrality of the 
system. The configurational part of the Hamiltonian for this system can be written in 
the form 

where u(r, r’) is the bare Coulomb interaction between two unit charges obtained as 
a solution of the Poisson equation 

V2u(r, r ’ )=-8( r - r ‘ ) /m0 (2.2) 

and cpo(r) is the external potential due to the fixed charges present in the system. The 
grand canonical partition function can now be expressed as 

E= N = O  ($)N j (v l exp( -pUN)d3Nr  (2.3) 

where p is the inverse thermal energy ( p  = (kT)-’) and V is the volume of the region 
occupied by the counterions. We now proceed by applying the Hubbard-Stratonovich 
transformation to the expression (2.3), namely 

exp( - p  eieju(rl, rj) (2.4) 
i , j  

where i is the imaginary unit. The average over auxiliary fields is defined as 

with 

A(@)  = ( 2 ~ ) ~ / * ( d e t  pu-’(r, r’))’/*. (2.6) 

This trick allows us to sum the expression (2.3) exactly, leading to the desired functional 
integral representation of the grand canonical partition function in the form [6] 

E = (det pu(r,  r’))-”’ exp(S(cp(r)))acp( r )  (2.7) 
i v ( r ) )  

where kacp(r) =limN, dcp(rl) dcp(r2). . . dcp(rN) and the action S is obtained as 

S =   PEE^ (Vcp(r))2d3r+~,  exp(-ipeocp(r)) d3r -p i  a c p ( s )  d2s (2.8) 

where s is the radius vector along each surface at z=*a.  In the above equation we 
have redefined the auxiliary field as cp( r)*cp( r )  + icpo( r) and renormalised the value 
of the absolute activity, namely 

I 5 f 
z,+ z ,  exp(fpNe:u(r, r))  (2.9) 
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where N is the total number of the counterions in the system and u(r ,  r )  is the 
self-energy of each ion. Equations (2.7) and (2.8) define a field theory that we could, 
exploiting an obvious analogy, name the exp-Gordon theory. The action (2.8) is clearly 
nothing but the Poisson-Boltzmann free energy [7] evaluated at an imaginary value 
of the charges, S = FpB(ieo), therefore the auxiliary fields q ( r )  could be interpreted as 
the local electrostatic potentials [ 6 ] .  

The ‘classical equation of motion’ corresponding to the exp-Gordon theory is clearly 
the Poisson-Boltzmann equation with an appropriate boundary condition that 
expresses the overall electrical neutrality of the system. Instead of just writing down 
the Poisson-Boltzmann equation we shall first of all introduce 

(2.10) 

that will allow us to write the Poisson-Boltzmann equation in the plane-parallel 
geometry, where the mean potential depends only on the transversal coordinate (z),  as 

d2 u -- dz2 - -u:u + u3 (2.1 1 )  

where uo is the value of U at the midpoint between the two boundary surfaces, i.e. 
uo = u(z = 0). The electroneutrality condition (boundary condition) written in the new 
variables is 

au 
-= = * a )  (2.12) 
an 

with 

r = peoc+/ 

where n is the local surface normalt, Equation (2.1 1) is clearly nothing but the equation 
of motion of the q4 model; we have been, however, unsuccessful in establishing any 
sort of general transformation, valid also beyond the ‘classical’ regime (the mean-field 
regime in the statistical mechanical sense), between the counterion-only system (the 
exp-Gordon theory) and the q 4  model. 

As can be easily verified, the solution of (2.11) and (2.12) in the plane-parallel 
geometry, where z is the transversal coordinate, can be written in the form 

U’( 2)  = 2cy2/COS2( cyz) (2.13) 

where a is obtained as a solution of 

cy tan( a a )  = r. (2.14) 

This solution depends on the value of the dimensionless coupling constant ( F a )  and 
we shall address two different limiting cases corresponding to small and large values 
of (Tu).  The two limiting solutions of (2.14) are obtained as 

aa( ra  + o ) - d E  ( 2 . 1 5 ~ )  

a a ( r a  = 4 2 .  (2.156) 

t It should be noted at this point that r-’ and a are the sole intrinsic length scales of the counterion-only 
system and therefore the product Ta is the only dimensionless coupling constant that can be constructed. 
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The appropriate potential profiles are obtained by inserting these solutions into (2.13) 
and taking the indicated limits. 

Finally let us just add that the interaction free energy corresponding to the mean-field 
solution can be derived straightforwardly in the form 

(2.16) 

where S is the area per surface. As will be shown in the next section the saddle-point 
approximation allows us to treat the mean-field and the fluctuation contributions to 
the free energy as additive. 

3. The saddle-point method and the 5-function evaluation of the functional 
determinant 

Since the action of the exp-Gordon theory is not Gaussian no exact evaluation of the 
grand canonical partition function (E) is possible and we are forced to use approxima- 
tive methods to obtain fair estimates of the thermodynamic properties of the system. 
The quadratic fluctuation correction to the mean-field solution is obtained if we develop 
the action S, (equation (2.8)), up to second order in fluctuations around the solution 
U = u(z). In this particular case the functional integral (2.7) is reduced to Gaussian 
integrations and can be evaluated exactly. This is the essence of the saddle-point 
approximation that consists of the following statement: 

(3.1) 

valid if the fluctuations in the local electrostatic potentials are small overall. The 
‘classical’ (Poisson-Boltzmann) value of the action So is obtained as S(qo)  where qo 
is the solution of the PB equation that we have written in the form of (2.10). The 
thermodynamic potential, R, can now be obtained in an explicit form by executing 
the Gaussian integrations implied by (3.1): 

R=-kTlnS=-kTSo+- lnde t ( l  kT 2 u(r, r’)(  SqP“’)”r’’) S2s ) 0 d3r’). 

Clearly R is a functional of the generalised response operator 

(3.2) 

with u ( z )  being the solution of the ‘equation of motion’ (2.1 1 ) .  We have already shown 
that the functional determinant in (3.2) can be evaluated by the resolvent operator 
method in conjunction with a complicated coupling constant integral [4]. For our 
present purposes it is, however, much more convenient to use the sc zeta-function 
method [ 5 ]  that will permit us to obtain analytical results in both large- and small- 
coupling limits. 

The zeta-function method consists of the following [ 5 ] .  If we construct a ‘heat’ 
function G(r ,  r’; t )  associated with an operator A by way of a differential equation 
(‘heat equation’) 

a 
a t  (3.4) AG(r, r’; t )  = -- G(r ,  r ;  t )  
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satisfying the boundary condition lim,* G( r, r’; t )  = S( r - r ’ ) ,  and then define the 
SA-function adjoined to the operator A by the integral 

. r m  
I l A ( s )  =- 1 dt t s - ’  Tr G(r, r’; r )  

u s )  
(3.5) 

it is then straightforward to show that the determinant of the operator A can be 
expressed with the help of the lA(s) as 

In det(A) = -- d?:s)/ s = o ’  
(3.6) 

Returning now to our problem of evaluating the functional determinant of the gen- 
eralised response operator (3.3) we are led to the following ‘heat’ equation 

(3.7) 

which after taking cognisance of the fact that u(r, r’) satisfies the Poisson equation, 
(2.2) leads to 

aG(r, r ’ ;  t )  
at 

V2G(r, r’;  t)-uZ(z)G(r, r ’ ;  t )  = (3.8) 

The above equation would describe a quantum mechanical ‘particle’ moving in an 
external potential uz(z) in imaginary time. Taking now into account the definition of 
the 6-function (3.5) we can derive the fluctuation part of the free energy (3.2) in the 
form [8] 

(3.9) 

where Tr is the trace operator. It will prove profitable to derive an alternative form 
of the free energy valid in the case that U is a constant, u2=A. This case will be 
relevant while considering the small-coupling limit. We proceed as follows. First of 
all we note the identity derivable from (3.8) 

JOA G(  r, r’; t )  dA = -G( r, r’; t ) /  t. 

Taking this into account we can rewrite (3.9) into the following form: 

F=-kr\oAdA 2 IomdtTrG(r , r ’ ;  t). (3.10) 

This result can be cast into an even simpler form that we shall need afterwards. Now 
since our system is translationally invariant in the (x, y)  plane, we can introduce the 
Fourier transform 

g(z, z’; 0, t )  eiQ(’-’’) d2Q/ ( 2 ~ ) ’ .  (3.11) 

Furthermore the function g(z, z’; Q, t )  can be expressed through its Laplace transform 
as 

. r  
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where c is the standard inverse Laplace transform contour. Inserting (3.11) into the 
energy formula (3.10) while taking into account the above definition we are finally led 
to the following form of the free energy: 

F = kTS I,* dh lor Q d Q  Tr g (  z, z’; Q, p = 0) 
47T 

(3.12) 

where S is the surface area of the two interacting surfaces. This formula is most 
advantageous for systems that show plane-parallel symmetry. 

4. The small-coupling limit ( F a  + 0) 

In order to solve (3.8) in the small-coupling limit it will prove profitable to introduce 
the inverse Laplace transform (Lf-’) of the function g ( z ,  z ‘ ;  Q, t )  as 

g ( z ,  2’; Q, t )  = ~ - Y g , ( z ,  z’; 011. 
With this ansatz the ‘heat’ equation in this limiting case can be cast into the form 

a2 
( z ,  z’; Q ) - ( Q 2 + 2 a 2 + p ) g p ( z ,  z’; Q)=O az2 g p  

- (4.1) 

where the appropriate form of u ( z )  has been used, namely (2.13) with ( 2 . 1 5 ~ ) .  In 
case of no boundaries the correct solution of the above equation that reduces to the 
&function in the limit of r 3 0  is obtained as 

where 

w 2 =  Q 2 + 2 a 2 + p .  (4.3) 
As we introduce the boundaries gp and its first derivative should remain continuous 
across z = * a .  In the region IzI > a there are no ions and a = 0. This condition leads 
to the following form of the Green (‘heat’) function 

3 (4.4) 
wz’ sinh wz sinh wz’ + 

(e2wa + y )  
g,(z, z’; 0) =- 

with 

(Q2+2a2+p)”2-(Q2+p)’ /2 w -  WO 

(Q’+ 2aZ+p)’l2+ ( Q 2 + p ) ’ / ’  - w + WO 
-- Y =  (4.5) 

The evaluation of Tr is now straightforwrad and can be cast into a very simple form, 
namely 

Lf-‘[Tr g,(z, z’: Q ) ] Q  dQ. (4.6) 

It is easy to show furthermore that Tr gp satisfies the following identity: 

a 
aa 

Tr g,(z, z’: Q )  = 7 I(a2, p )  (4.7) 
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The free energy (3.12) can also be evaluated in closed form in this limiting case yielding 

F = kTS Iox Q dQ[ I(cY’, p = 0) - I ( a 2  = 0, p = O)]. 
417 

(4.9) 

It is not surprising that this result coincides with the formula derived through the WKB 

approximation [4, equation (70)] since this approximation is exact in the limit a j 0 .  
With substitution ( Q u ) ~  = u2 sinh2 t, where U = (2aa)”* ,  and a partial integration, the 
free energy (4.9) can be rewritten in an equivalent form 

F kT2a 2 r  kTu2 _ -  - -- (Y)~’~+-  /ox sinh t cosh t dt[ln(l -e-4‘-4ucosh‘ ) -In( 1 - eW4‘)]. s 4l73 4xa2  
(4.10) 

We now have to evaluate the appropriate expansion of the above integral in the limit 
U j 0. As can be demonstrated, the third-order term in U of the second expression in 
(4.10) exactly cancels the first term; the correct expansion for F therefore starts with 
a fourth order term in U, the exact form being 

F k T u 4  kT 
In( U )  = - r2 ln(4ra) .  -2:-- 

s 417 a2 4rr 
(4.11) 

This expression is clearly not analytic in U and that is the reason why the expansion 
of the same integral quoted in [4, equation (71)] was not derived correctly. Equation 
(4.11) is the final expression for the first-order (in k T )  correction to the mean-field 
free energy of an inhomogeneous counterion-only system in the limit of small coupling. 

5. The limit of large coupling (Fa 00) 

There is a certain essential simplification in this limit that we want to discuss first. A 
look at the mean-field solution (2.13) shows that in the large-coupling limit the potential 
in the ‘heat’ equation (3.8) becomes infinitely large close to the boundaries z = * a  
The region IzI < a becomes therefore basically decoupled from the rest of the volume 
and the surfaces begin to act like ideally polarisable boundaries that do not allow the 
penetration of the electric field. This fact greatly simplifies the calculation of the Green 
function g ( z ,  z’; Q, t )  of the ‘heat’ equation in this limit. 

Since in the large-coupling limit different Q-modes within the I z / < a  slab and 
outside of it are decoupled it is very convenient to express the Green function of the 
‘heat’ equation in the form of a functional integral 

g ( z, z’; Q, t = [ exp ( - a Io‘ (2) d t - V (  z ) d t ) 9 z  ( t ) (5.1) 
Z ( 1 )  

where Edz(t)=lim,,,,dz(tl)dz(t2) . .  . d z ( t N )  and 

V ( z )  = Q*+ u 2 ( z ) .  (5 .2)  
The propagator (5.1) represents diffusion in an external field or a quantum mechanical 
particle in an extemal potential moving in imaginary time. With a change of variable 
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z + 22 - a the functional integral (5.1) can be transformed into the propagator of the 
Poschl-Teller potential solved analytically by Inomata and Kayed [9]. Using their 
general result for the propagator of a one-dimensional quantum mechanical particle, 
in an external potential of the form 

V (  2 )  = 2 VoA ( A  - 1) sin-2 22 

derived on the basis of a special coordinate and ‘time’ transformation in the functional 
integral (5.1), we can obtain the following form of the ‘heat’ function (5.1): 

(5.3) 

where 

( N + 3 ) !  
N !  AN(z, 2 ’ )  = ( N  +2) - P;3&(sin a~)P;~$~(s in  az’) 

with P : ( x )  being the associated Legendre functions. We can now insert this expression 
into (3.9) to obtain the free energy. Before doing that we make use of the orthogonality 
properties of the associated Legendre functions, remaining with 

Tr G( r, r’; t )  = - /o“Trg(z,z’ ;Q, t )QdQ=--  S 1 “  e-a2(N+2)Zr.  
2.rr 4~ t N = O  

(5.4) 

J A ( s ) ,  equation (3 .9 ,  can now be evaluated straightforwardly. First of all we use the 
integral representation of the Riemann zeta function J ( s )  

a, a2 [ t S - ’  e-n2r d t  = 5(2s)r(s) .  
J o  n = l  

Next we reduce (5.4) to a form that will allow the application of the above Riemann 
integral, which amounts to a displacement of the origin of the N summation. Now 
the use of the Riemann integral allows us to write 

Therefore 

Invoking again (3.9) and the basic properties of the Riemann zeta function [lo] we 
can obtain for the free energy in the limit of large coupling the following expression: 

a21n(a/r)---- 
F kTdlA(s=O)  kT 
S 2 ds 4T 
- 4  - -- (5.6) 

In the last term of the above equation we can clearly recognise the zero-order term of 
the van der Walls interaction between two ideally polarisable surfaces at separation 
2a [ 13. This is not surprising since we noted that in the large-coupling limit the surfaces 
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ideally screen the spatial regions IzI > a from electric fields, The other terms are due 
to the fluctuations of the local electrostatic potential around its mean-field value. 

6. Discussion 

In this work we have improved the standard Poisson-Boltzmann result for the interac- 
tion of two electrified surfaces immersed in a counterion-only Coulomb fluid by going 
one order beyond the mean-field result. Our approach was based on a functional 
integral representation of the grand canonical partition function that allows the applica- 
tion of standard field-theoretic approaches. The limiting cases of small and large 
couplings have allowed a derivation of simple analytic results. 

The same problem has recently been treated by Attard et a1 with standard statistical 
mechanical methods. Their result (equation (3.14) of [ 111) in the large-coupling limit 
is similar to our (5.6) except for a spurious factor of 77/4. This difference is, however, 
not trivial. This can be most easily seen by inspecting (4.8), which is valid in the 
opposite limit but nevertheless proves our point. We showed [4] that the first term 
corresponds to a generalisation of the bulk (Debye-Huckel free energy in the case of 
uni-univalent electrolyte) free energy, the third one to a generalisation of the surface 
(Onsager-Samaras free energy in the case of uni-univalent electrolyte with image 
interactions) free energy and the second one is nothing but the log of the secular 
determinant. Of these three terms the result of [ 111 contains only the second one; the 
dependence of pure bulk and pure surface modes on intersurface separation was 
therefore ignored. The situation is somewhat similar to the case of van der Walls 
interactions in media with a spatially dispersive dielectric function [ 121. There too the 
bulk modes depend on the intersurface separation and their contribution should be 
included into the interaction free energy. However, in the asymptotic regime (a+co) 
the first and the third terms of (4.8) become unimportant, and the result derived by 
Attard et a1 should be asymptotically correct. This clearly is the case (see (5.6) in the 
strict limit a+co). 

Finally let us just quote the total interaction free energies that we derived in the 
saddle-point approximation. In the small-coupling limit the sum of (2.6) and (4.11) 
gives 

This form of the free energy could be interpreted in the sense that the value of the 
surface charge density is renormalised due to the fluctuations in the local electrostatic 
fields as the two surfaces come close together. In the opposite limit the sum of the 
mean-field and the fluctuation contribution gives to the lowest order 

This limiting form suggests the interpretation that the effective intersurface separation 
is renormalised due to the action of the fluctuations. 

We can end our contribution on an optimistic note by hoping that the field-theoretic 
approach to the interaction of electrified surfaces in Coulombic fluids opens new 
possibilities for the more powerful methods, already amply used in solid state physics, 
to be applied to this type of problem. 



284 R Podgornik 

References 

[ l ]  Derjaguin B V, Churaev V V and Muller V M 1987 Surface Forces (New York: Consultants Bureau) 
[2] Kjellander R and Marfelja S 1988 J.  Physique 49 1009 
[3] Gulbrand L, Jonsson B, Wennerstrom H and Linse P 1984 J.  Chem. Phys. 82 2221 
[4] Podgornik R and ZekS B 1988 J.  Chem. Soc. Faraday Trans. I1 84 611 
[5] Ramond P 1981 Field Theory: A Modern Primer (London: Benjamin-Cummings) 
[6] Kleinert H 1978 Fort. Phys. 26 565 

Samuel S 1978 Phys. Rev. D 18 1916 
[7] Levine S 1951 Proc. Phys. Soc. 64 51 
[8] Rivers R J 1987 Path Integral Methods in Quantum Field Theory (Cambridge: Cambridge University 

[9] lnomata A and Kayed M A 1985 Phys. Lett  lO8A 9 
Press) 

[ lo]  Whittaker E T and Watson G N 1952 A Course in Modern Analysis (Cambridge: Cambridge University 

[ l l ]  Attard P, Mitchell D J and Ninham B W 1988 J.  Chem. Phys. 88 4987 
[12] Podgornik R, Cevc G and ZekS B 1987 J.  Chem. Phys. 87 5957 

Press) 


